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Theme: Compiler transformations can be correct but not secure. The objective of this project is to analyze the security aspects of modern day compilers.

Deliverables:

*  Security analysis of important compiler optimizations with respect to information flow attack: Code motion, Register allocation with spilling and splitting,

Retiming

*  With respect to the other target level attacks, security analysis of compiler optimization techniques such as Dead Store Elimination (DSE), Register

Allocation, Code Motion, SSA, Retiming

*  Translation validation of Compiler Security

Current Status:

* We have proved that register allocation in LLVM leaks information. We came up with a secure register allocation scheme.

* We have developed an translation validation framework for checking security of complier optimizations

Societal Impact:

* Security in software and hardware is a biggest concern in recent days. This project will help to fix certain security loop holes in software and

hardware generation process.

function act_on_password()
{

x = read_password();
<< use x >>

x =0; // dead store
return;

b P

Dead Store

Motivating question: Is it secure ? No

Elimination (DSE)

EEEE—

~

—

function act_on_password()

x = read_password();
<< use X >>

skip;
return;
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