Security Analysis of Compiler Optimization Techniques— CRG, SERB :

Dr. Chandan Karfa -Department of Computer Science and Engineering

\utal:d

5% O”‘“’? ?%
. .é
%Tm;

’i'rp-%

Theme: Compiler transformations can be correct but not secure. The objective of this project is to analyze the security aspects of modern day compilers.

Deliverables:

* Security analysis of important compiler optimizations with respect to information flow attack: Code motion, Register allocation with spilling and splitting,

Retiming

* With respect to the other target level attacks, security analysis of compiler optimization techniques such as Dead Store Elimination (DSE), Register

Allocation, Code Motion, SSA, Retiming

* Translation validation of Compiler Security

Current Status:

* We have proved that register allocation in LLVM leaks information. We came up with a secure register allocation scheme.

* We have developed an translation validation framework for checking security of complier optimizations

Societal Impact:

* Security in software and hardware is a biggest concern in recent days. This project will help to fix certain security loop holes in software and

hardware generation process.

function act_on_password()
{

x = read_password();
<< use x >>

x =0; // dead store
return;

b P

Dead Store

Motivating question: Is it secure ? No

Elimination (DSE)

EEEE—

~

—

function act_on_password()

x = read_password();
<< use X >>

skip;
return;

~

Hardware

Software

Programming
Language (Compiler)

RT Level

\ o

* Insecure, as the secret password is leaked through the stack in Q.

Gate Level

Assembly (HEX)

Ease of securing

Layout

Binary

n
0
3
V]
3
=
9]
5
0

Live Interval

Analysis

.......................................

Insert Spill
After

Insert Reload
Before Use

Definition

Spill Weight Priority Queue Register
Calculation Construction Assignment
Create New | ! l
Intervals For | | : -
Spills and 4—:—: Split <«— Eviction
Reloads
y 9 = B)
_~Last >\ Insert Store K 3
.~ Yes |LastReload | |

f Nd\[
Spill

Secure Greedy Register Allocation in LLVM

